3 research outputs found

    Continuous sensing and quantification of body motion in infants:A systematic review

    Get PDF
    Abnormal body motion in infants may be associated with neurodevelopmental delay or critical illness. In contrast to continuous patient monitoring of the basic vitals, the body motion of infants is only determined by discrete periodic clinical observations of caregivers, leaving the infants unattended for observation for a longer time. One step to fill this gap is to introduce and compare different sensing technologies that are suitable for continuous infant body motion quantification. Therefore, we conducted this systematic review for infant body motion quantification based on the PRISMA method (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). In this systematic review, we introduce and compare several sensing technologies with motion quantification in different clinical applications. We discuss the pros and cons of each sensing technology for motion quantification. Additionally, we highlight the clinical value and prospects of infant motion monitoring. Finally, we provide suggestions with specific needs in clinical practice, which can be referred by clinical users for their implementation. Our findings suggest that motion quantification can improve the performance of vital sign monitoring, and can provide clinical value to the diagnosis of complications in infants.</p

    Accurate van der Waals coefficients from absolute total cross sections for the Ar–noble gas systems

    Get PDF
    Using a method based on the absolute calibration of the density–length product of a supersonic secondary beam in a 20 K cryoexpansion chamber, total cross sections are found for Ar–Ar, Ar–Xe, and Ar–Kr collisions

    Central apnea detection in premature infants using machine learning

    Get PDF
    BACKGROUND AND OBJECTIVE: Apnea of prematurity is one of the most common diagnosis in neonatal intensive care units. Apneas can be classified as central, obstructive or mixed. According to the current international standards, minimal fluctuations or absence of fluctuations in the chest impedance (CI) suggest a central apnea (CA). However, automatic detection of reduced CI fluctuations leads to a high number of central apnea-suspected events (CASEs), the majority being false alarms. We aim to improve automatic detection of CAs by using machine learning to optimize detection of CAs among CASEs. METHODS: Using an optimized algorithm for automated detection, all CASEs were detected in a population of 10 premature infants developing late-onset sepsis and 10 age-matched control patients. CASEs were inspected by two clinical experts and annotated as CAs or rejections in two rounds of annotations. A total of 47 features were extracted from the ECG, CI and oxygen saturation signals considering four 30 s-long moving windows, from 30 s before to 15 s after the onset of each CASE, using a moving step size of 5 s. Consecutively, new CA detection models were developed based on logistic regression with elastic net penalty, random forest and support vector machines. Performance was evaluated using both leave-one-patient-out and 10-fold cross-validation considering the mean area under the receiver-operating-characteristic curve (AUROC). RESULTS: The CA detection model based on logistic regression with elastic net penalty returned the highest mean AUROC when features extracted from all four time windows were included, both using leave-one-patient-out and 10-fold cross-validation (mean AUROC of 0.88 and 0.90, respectively). Feature relevance was found to be the highest for features derived from the CI. A threshold for the false positive rate in the mean receiver-operating-characteristic curve equal to 0.3 led to a high percentage of correct detections for all CAs (78.2%) and even higher for CAs followed by a bradycardia (93.4%) and CAs followed by both a bradycardia and a desaturation (95.2%), which are more critical for the well-being of premature infants. CONCLUSIONS: Models based on machine learning can lead to improved CA detection with fewer false alarms
    corecore